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Abstract- To rigorously analyse the extremal
bounds of the Lipschitz constant in metric
projections over totally convex subsets of
Banach spaces and assess its implications in
variation analysis and control. A variation
framework based on non-expansive mappings
and projection operators is developed. The
analysis employs advanced tools from convex
analysis and functional geometry, introducing a
supplementary parameter satisfying a modified
Lipschitz condition. Comparative analysis is
standard and modified

performed between

projection schemes across varying convex

subsets in infinite-dimensional Banach spaces.

The study establishes novel theoretical

bounds—both upper and lower—for the

Lipschitz constant governing metric projections
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in totally convex subsets of Banach spaces. The

introduction of an

additional regularizing constant enhances the
local stability and smoothness properties of

Lipschitz continuous functions, especially under

strong convexity conditions. Results reveal that
the modified projection scheme not only
preserves non-expansiveness but also improves
convergence behaviour in iterative methods.
Compared to classical results, this framework
provides tighter control over deviation in
optimization and variation inequality problems.
The analytical results are consistent with, yet
significantly extend, foundational work in
nonlinear functional analysis, offering deeper
insight into the geometry-driven behaviour of

metric projections in high-dimensional analysis.



Derives tighter Lipschitz bounds for projections
via a modified constant, enhancing smoothness
and convergence in nonlinear optimization over
Banach spaces.
Keywords: Lipschitz  Condition, Metric
Analysis, Strong Projection, Banach Space,

Convex Sets, Optimization

I. INTRODUCTION

The Lipschitz condition is a term used in
mathematics to characterize the rate of change
of a function, especially when examining the
behavior of functions. A constant factor restricts
how quickly the function's output can alter in
response to changes in its input for a function
that meets the Lipschitz condition. A function
that converts input values to output values might
be used as an example. The pace at which the
output changes as the input changes is
constrained by a fixed constant if this function is
in accordance with the Lipschitz criterion. In
other words, the function must vary in a
controlled way over its domain and does not
show abrupt jumps or unbounded expansion.

A Lipschitz continuous function can be
comprehended by looking at its graph. The
function's graph will be devoid of steep slopes

and abrupt corners if it meets the Lipschitz

criterion. Rather, a constant (the Lipschitz
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constant) regulates the rate of change at each
point in the graph, causing it to change
smoothly and gradually. A wuseful tool for
evaluating the stability and smoothness of
functions is the Lipschitz condition. It is
essential to several branches of mathematics,
such as optimization, machine learning, and
analysis. A key idea in differential equations
and mathematical the

analysis, Lipschitz

condition is especially important when
discussing the stability and uniqueness of
solutions to specific issues. When there is a
constant K that is such that, for every point x
and y in the domain, the following statement is
true: the difference in the values of their
functions is bounded by K times the difference
between x and y. This is the case when there is
a constant K. In the event that this is the case,
then the function is said to be in compliance

with the Lipschitz criterion.

Influence of additive Constant on the Lipschitz

Condition

For this study, it is presumed that the section B
is a genuine Banach space, and the notation B*
is used to indicate the dual space that is included
within  this section. According to this
configuration, A real Hilbert space is denoted as
H, while the n-dimensional Euclidean space is
referred to as Rn. Both of these spaces are n-

dimensional. The statement implies that the



evaluation of the functional P € B at the
position u € B is currently being carried out.
This is the consequence of the statement. For
the purpose of providing a description of the
ball Br(l), one may say... In order to acquire the
set Br(l), it is necessary to define the set xu€ B
ID>-u—1I]I<r}. When set A is a subset of set B, the
symbols O0A, int A, and cl A are utilized to
represent construct A's perimeter, interior, and
boundary, in that sequence. This is because
these symbols are used to denote the subset of
set B. The diameter of a subset z € B can be
determined using the following formula: Diam
A =sup {u,y € A} |lu — yll_oo. The following
illustrates the component of the support function

tasked with delineating the subset Ac B:
S(P,A) = ;ob (P, ), sup(p,?),Vp € B *.

The typical cone that leads to a convex closed
subset ACB at a point £ €A is represented by
the notation N(A, ¥). Its definition is as

follows:

N(A,?)
s(P,A)}.

={P €eB*| (P, 0>

For any closed convex subset A that belongs to
B and for every vector P that is an element of
B*, the set A(P) is defined as the collection
{xEA|(P,u)=s( P, A)}. where s( P,A) indicates

a particular value that is related with P and A.
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In the following formula, the distance between a
point u that belongs to the set B and the subset
A that is subset of x is specified.

Cu,A)= 21 u, 2 |

A point u€B is defined as the metric projection

onto the set A.

Pu={LeAlllu—"*I=C(x A}

For subset the (O

any ACB,
neighbourhood of A, defined as:

open

U(A,6)={ueB|C(u,A)<C .

For every closed convex subset A that belongs
to the set H and for every point u that belongs to
the set H, the set P,u is a singleton, as is well
known. Moreover, the following inequality is
true for any pair of points uy and u; that are

valid in H:

”dq'Oa CAl,dq'Za CA3,Uq'4-7 CAS,”S 1 ”an ul,u27

Uz Uy, Us |l

where A; = P u; for 1=0,1,2,3,4,5
(1.1)

In Formula (1.1), The Lipschitz criteria
of 1 serves as the most optimal bound in a
general context, and it can only be obtained for
closed affine subspaces. This is the only way to

obtain it. Due to this, the limits that can be



attained are restricted. Because the condition is
met, this is the case. Alternatively, let A =
Bx(¥) € H , and consider any points ug, U; Uy,
U3 Uy, Us, €EH with p(uy,A) = py >0 and
pu, A) =p1 >0 ,  pluz, A) =p; >0,
p(uz, A) =p3 >0 , pluy,A)=ps >0 ,
p(ug, A) = ps > 0 Using the cosine rule for

the triangle uqu €

(where the side lengths are || £ —uy lI=R +

poand

”‘E_u1"::R+p1,llf_'U-z”::R‘}‘Pz,
”‘E_u3"::R+P3, ||£_u4||:R+P4,
| £ —us ll=R+ ps) we can readily derive

that:

Il €0 — 25 lI=

The purpose of this investigation is to determine
convex closed ACH that are in accordance
with the following condition: for every non-zero
€, there is a constant 0 < (a + f +y)< C < 1,
such that for all five points
Ug, Ug Uy, Ugly, UsEH \ U(A,CE), the following

inequality is satisfied:

”‘Eo_‘g5"§0{"uo_u1" +ﬁ ”uz_u—?,”

Ty llug—us 1<Cllug —us |l

£ = Pau,i = 0,1,2,3,4,5

(1.4)

The discussion focuses on specific results
related to the boundaries of the Lipschitz
constant projection operator for this metric,

building upon the discoveries reported in [1].

R

- 2__ - 1 — _ 2
JR+CO)R + CD(R + 62)(R + C3)(R + CA)(R + 65) Vo = ughE—fiflysis & gfded 6P mE4onc§D O a

(1.2)

Here #; = Py4,i = 0,1,2,3,4,5

Hence, if there exists a value € > 0 such that €
= (ug, Be(¥) =2 €,i=0, 1,2,3,4,5 then

R
— 5 I )
(R + C0+C1+C2+E3+C4+CE5)

(1.3)

Il 2o

I Ug —

Us Il
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highly convex set characterized by a specified

radius R.

The initial approach involves examining a
convex strongly subset with a radius R>0. A
strongly convex subset is defined as a nonempty
set that can be represented as the intersection of
closed balls, where each ball has a radius R>0.
Here, R denotes a strictly positive real number,
which plays a critical role in defining the
of the This

geometric properties subset.

characterization implies that the subset A is not



only a subset of B but also satisfies a specific
convexity condition. More explicitly, the set A
is considered convex strongly if £ a subset UCB
that meets the criteria of strong convexity and is
recognized as such within the broader set B.
This foundational understanding forms the basis
for further exploration and analysis of the
Lipschitz properties of the metric projection
operator under the constraints imposed by these

geometric conditions.

A =Nyey Br(w).

An effective example of this is the close
relationship that exists between strongly convex
sets with a radius of R and symmetrically
maximal sets, as well as sets with constant
width. A significant relationship exists between
these sets and various classical concepts.
Furthermore, they constitute a critical element
in various optimization and optimal control
problems [17, 18, 5,6,9, 13]. For further details
on strongly convex sets with a value of R
greater refer to

(2,3,17,18,5,11,10,4,13].

than 0, please sources

Proposition 1.1 Providing Support for the
Principle [2,18]: If the following condition is
met for every unit vector P that is a part of H
and the point { #(P)} is equal to A (P), then a
closed convex subset A that is included inside

the set H is considered to be highly convex with
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a radius of R. This is because the point {I(P)} is
equal to A (P).

A € Br(£(P) — Rp)

Proposition 1.2 [8]: A c H be convex closed
subset is defined as highly convex with radius R
if and only if the following condition is met.
This is the sole factor that enables us to make
this assertion. For all unit vectors P and q that
belong to H, and the corresponding points { £
(P)} = A(P) and { ¢ (q)} = A(q), a convex
closed subset A is defined to be convex strongly

n

with a range R. The term " convex strongly "
refers to a specific mathematical property of a

function.

I €(P) —€(@ISRIP—qll

II. ANALYSIS OF THE METRIC
SYSTEM AND A ROBUST
PROJECTION OF THE RADIUS R

Lemma 2.1: Consider the following: AcH is a
convex closed subset, C is greater than zero, and
C is a subset of the interval (0,1). Assume that
(1.4) is all
Ug, Uq, Uy, Uzly, UsEH \ U(A,F), that
Y, = Pyu;,i = 0,1,2,3,4,5.. The set A is
be

Formula valid for

and
these

considered to bounded under

conditions.



Proof: It has been stated by Danford and
Schwartz [14] that there is a subset which is
dense S < OA that is such that every point £ €S

satisfies the criterion.
Y = Pju,. Furthermore,

[(up) = {£ + Aup —€)| 1 = 0}

ct + N(AYD

Therefore P,4l( £, u,) = {£}. Take any points
Fix £,b € S. £ points z, € 1(#,uy) and zb €

1(b, u,) sustaining

l zz— € lI=Il z, — b ll= € Then,

Il e—bl< Clizg— 2l
< CQlzg— €l +11€—b
I +lz, — bl

= CR2C+I¢ - bl

ZC@:

Thus, 0

l€—b II< The property clS =

by Lemma 2.1, we can restrict our attention to

bounded sets.

Theorem 2.1: Consider, a convex, closed, and
subset which is bounded as A € H. Let , € > 0
and Ce€(0,1). If (1.4) holds for all these points
Ug, Ug, Uy, Uz, Uy, UsEH \ U(A,C)
Y, = Pyu;,i = 0,1,2,3,4,5then A is strongly

with

convex with a radius R < ——
(1 C)

141

Proof. Let uy,u, €9(H\U(4,C), ie.
Clu;, A) = = 0,1.2.3.4.5 We have
€9 — 5 1< C Il £g = &5 Il + Cg 1| 2
(us—f1)  (up—t3)  (uz—¥f3) (usa—ty)
(® (® (® (®
(us—¥s) I
(®
(2.5)
I €g =5 ISR
I (ug — %) _ (uy —41)
(®) (®)
_ (up; —43) _ (us —¥3)
(©) (®)
. (uy —44) _ (us —¥s) I
(©) (®)
and,(u(‘ S0 € N(A, ), i0,1,2,3:4,5
Now, we show that,
(u-Pqu)ued (H\U(AC)) _
e e RO

(2.6)

(u-P4u) € 0B, (0)
(®

pointu € d (H\U(A,C).

This presence is clear for any

Consider,? € dB; (0) Then,
point £(P) € A.
s(P,A) [17]. This

there exists a
(P, 2(P)) =
implies(? ,£(P)) =

such that



s(P,A). Hence u(P) = +£(P) + CP €
0 (H\U(A,C)) and Py(u(P)) =L(P).

Thus P = %. Using Methods (2.5) and

(2.6), along with Proposition 1.2, we conclude

that the set A is strongly convex with radius R.

Theorem 2.2. Consider convex strongly which
is subset A < H of radius R > 0. Let
Uy, U1EH\A, C;C(u;, A), and ¥; = Pyu;,i =
0,12,3,4,5. Then

Il €0 — 25 lI=

2
Lo — 45 IPIS R? (2 — —————(uy —
o =45 1%l ¢0¢1¢2¢3¢4¢5( 0

Yo, uy — €y, uy — €, uz — f3,uy — €4, us —

35)>

R2(2+

II{’0—€5||2+||u0—u5||2—||u5—t’0||2—||u0—t’5||2+)
CoCs

(2.8)

Let a =l ¢y — ¥ ll,and e =1l ug —u< |l. By

R

. - 2— — 61— — 3 - C4 — €5)?
V@R + C0)(R + C1)(R + €2)(R + E3)(R + C4)(R + €5) ‘/" Yo ui)yopoggon 1% we %:lgtam tQElat ¢ €59

2.7)

Proof. Using Proposition 1.2 we get,

|l €9 — €5 ISR
I (uo_go)_(u1_€1)
() (®)
_(uz_fz)_(u3_€3)
(©) ()
_(u4—€4)_(u5—€5) I
(©) (®)

And

142

-&e04cBR@0—Rﬂi?)

Putz = ¢, — R@L.Note that zuyfyfs = m —

0

2285, Il z — €5 || < R. By by the theorem of

cosine we take

cosszugtyts = —cosszzlys
_ —R24+ a’ -z — s |l
Bl 2Ra
a
S N
2R
And



lug— €5 12=Nug—4o 122 + 1l €5 — ¥5 II?

—2lluy — 4ol I £y — 25
I coszugtyts
2
a G:O
> €y +a? +
0 R
Similarly, we can derive that,
2
g — €5 17> €4° +a? + 222

Using Formula (2.8), we obtain,

aZ

< R*| 2

2 2 2 2
a‘+e“—Cy—a
+ R

CoCs

and following the transformations

a <

and by applying Proposition 1.1, we obtain

us — s
uOEchBR({’S—R )
Cs
llig—2sll
Hence, cossuptyts < BT as

demonstrated in the execution of Theorem 2.2.
Applying the law of cosines to the triangle

ug?o?s, we deduce that,

lug —us I2=luy—#s I+ €5 — 2
luy — €5 Il € coszugtoty
>l up — &5 12+ €5

Cellug — 2= II?
L sl s l
R

The final equation is equivalent to Formula (2.7)

Wlth@o = OanduO = ’go.

The observation can be made estimation that the

(2.7) for any convex strongly set with radius R

_ a’C _ ¢ 02 —a? - a’C, ligns estimation with the (1.2) for a ball of the
R

shme radius.

Corollary 2.1. The closed convex subset A € H
is a closed subset. It is possible to compare the

following characteristics:

R
V@R +C0)(R + CD(R + C2)(R + E3)(R + €4)(R + €5)

Observation 2.1: If the value of ug is contained
within the set A, resulting in € ,=0, then
Formula (2.7) can be considered reliable. As a

result, () = Pjyuy = Uy

A ug — uStonddP conliek wlR ara@dis-d¥dater Ha)2)ero

is the definition of the set denoted by the letter
A.

(1

since € > 0 and this points uy, us€EH\U(A, €),

the following inequality is satisfied, where



‘gi = ?ﬂui fori=0, 1.
)

I €9 — 45 Il < Il wo — us Il

R+ C

Consider a bounded subset A < B, and define

k, = [diam A] + 1,where [t] represents the
largest integer less than or equal to t. A Banach
space B is said to satisfy the intersection
property of Mazur if every closed, convex, and
bounded subset of B can be represented as the
intersection of all closed balls that enclose it.
Within the context of such spaces, this
characteristic offers a key characterization that
governs how closed balls cross with one
another. It was proved by Mazur that this
condition is valid for every reflexive Banach
space that is accompanied by a Fréchet
differentiable norm on its unit sphere. As a
result of his work, it was proven that the
existence of this differentiable norm guarantees
the satisfaction of the Mazur intersection
property. This provided significant insights into
the geometric structure of reflexive Banach

spaces.

Let us use the notation strcog A to identify a
subset ACB with a diameter that is smaller than

or equal to R. This will allow us to represent the

highly convex hull of radius R [2,18,4].

strcog A = ue%:cﬂcBR(quR(u)'
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According to

[11], if diamA <R, < R,,

then:"

A C strcog, A C strcog, A.

(2.9)

"Using Formula (2.10) and the definition of the
strongly convex hull, the Mazur intersection
property for any arbitrary closed, convex, and

bounded subset A < B can be expressed as:"

(X
N strcoy A= A

k = kdq
Let A represent the weak closure of the subset

AcCB.

It is possible to satisfy the requirement of weak
compactness in any reflexive Banach space by
ensuring that every convex, closed, and subset
which is bounded is present. This outcome is a
well-known and direct consequence of the
Banach-Alaoglu theorem, which guarantees that
the closed ball which is unit in the space of dual
is weak compact. This result is a direct
consequence of the concept. The weak
compactness of subsets in reflexive Banach
spaces becomes an essential and fundamental
quality within the realm of functional analysis

as a corollary to this idea.



Lemma 2.2: Accept that B is a Banach space
that is reflexive & possesses the intersection

property of Mazur.

Let the subset AcB is a convex, closed, and
function which is bounded. Then, for any unit

vector P that belongs to B*, we have

Lim .

K o oo s(P,strcoy A) = s(P,A).

Proof: Consider the possibility that the
statement is not true. Without sacrificing

generality, we can make the assumption that
there is a set of points Py that belong to the set

B*(0) and ¢ that is greater than zero.

Consider the possibility that the statement is not
true. Without sacrificing generality, we can
make the assumption that there is a set of points
P, that belong to the set dB;(0) and g that is

greater than zero.

s(Py, strcoy A) — s(Py, A) =
go, forallk = kA.
(2.10)

The space of reflexivity B implies the set
strcoy A 1s weakly compact for any k > KA.
Examine a point ¥, in strcop A  where
(Py, £1)= s(Py, strcoy, A). In addition, consider

a ), € A such that (P, £y)=s(Py, A) .

The Eberlein-Mulian theorem suggests that the
bounded sequence {#; }r~, weakly converges to

a point by € B without losing generality.
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Using inequality (2.11), it follows that we have:
_Lim
(?07 bO) - k — oo

SO == S(?O,c/q) + 50.

(?05 gk) 2 (?07 gO) +

ie. b0 & A.

In contrast to what was stated in the past, the
intersection property of Mazur and (2.10) are
the ones who are accountable for reaching that

result.

(00) (00}
boe N Cl,{#lrmc N strcoy, A

= A.

If the unit sphere in the Banach space does not

contain any line segments that are not
degenerate, then it can claim that the space is

strictly convex.

Let w:[0,+00) — [0,+o0) be a nonnegative

Li

function such that w(0) = " _)710 w() = 0.

It is a statement that the Banach space of metric
projection in a B is uniformly continuous with
modulus ® on a class of sets Ac2® if, for each
set A € A and any points ug, u;EB\A, the

following holds true:
I o —¥s < w(ll up —us ),

Where, ¢; = Pqu; i = 0,1,2,3,4,5



"In the Hilbert space, the metric projection is
uniformly continuous on the class of closed

convex sets with the modulus w(t) = t."

III. APPLICATIONS

Take into consideration the following example

of minimisation in the following order:

influ) ueA c R,.
(3.11)

We will discuss the gradient projection

algorithm in its standard form: u; € 90 A,
U1 = Palu — agakf '(w)), a > 0.
Consider the following assumptions:

1. Let Uc R"be subset arbitrary such that
A =Nyey Bgr(u) = @represents a closed

ball of radius R centred at u.

2. The function f: R®™ — R is differentiable
f'@w

condition.

and convex with its gradient

the

Specifically, there exists a constant L>0

satisfying Lipschitz

such that for all u,y € R",

Hf'w = f'I<Lilu-—yl
This condition ensures that the gradient
does not change too rapidly and is Lipschitz
continuous with the constant LL.

3. A natural number for any k, £ a unit vector P
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(uk) € N(A,uy) in N(A,ug) such that the inner

product (P (ug),f' (ux)) < 0. This implies that

ug - ok f' (ug)€ A for any ax > 0), meaning

that stepping in the negative gradient
direction scaled by oy takes the point outside
of the set A.

4. The solution to problem (3.11) is denoted
u*, which lies on the boundary of the set A,
ie., u, € d A. This condition highlights

the geometric relationship between the

solution and the set AA.

It is worth noting that state (ii) is corresponding
to the statement that for all u,y € R", the
gradient f '(u)obeys the Lipschitz property, as

outlined in [9].

w=yf'@ - f'O)N =11f'()-

f'on I
(3.12)
Concepts on Lipschitz continuity
have important implications for algorithm

design and optimization in many domains. The

results help gradient-based optimization

methods like gradient descent and Nesterov's
methods achieve

accelerated quicker

convergence rates and better stability by

tightening Lipschitz constraints with strong

convexity. Lipschitz continuity improves
machine learning model stability and
robustness. Lipschitz regularization controls

learning smoothness and makes neural networks



more resistant to adversarial attacks and better
at generalizing to unknown data. Lipschitz

allocate

feedback

constraints help control systems

resources and establish robust
mechanisms for dynamic stability. Monte Carlo
simulations and finite-difference
approximations can estimate Lipschitz constants
for complicated, high-dimensional systems.
These advances apply theoretical ideas to
structural data and

stability, processing,

optimization challenges.
IV. CONCLUSION

This paper uses robust projection methods and
metric analysis to provide a comprehensive
evaluation of the impact of an additional
constant on the Lipschitz condition. By
examining the characteristics of exceedingly

convex sets in Banach spaces, the article
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